
Introduction to Safety Systems
in Research Accelerators

Software
USPAS

June, 2004

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

Outline

Overview of software considerations for use in
safety applications

Objective
Introduce some of the concerns in using programmable
devices and some of the methods used to address them.

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

Nancy Leveson will argue that “software” cannot
fail, only hardware. Software is an abstract
concept executed by physical hardware.

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

A stress-strength model can be used.
Instead of physical stress on a component, software is stressed by
demands placed on the constraints within the context of the system.
These constrains can be:

physical, e.g. hardware failure,…
logical, e.g. out of bounds data,…
temporal, e.g. old data, mis-synchronized functions,…

It is a matter of how well the constraints are defined and how well
the system can handle excursions beyond the constraints.

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

Stress Strain

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

Safety Margin

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

Failure Point Stress

Stress
Failures

Failure
Point

2 σ safety margin

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

Increase in Failures Due to Insufficient Safety
Margin

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

Failure Point Stress

Stress
Failures

Failure
Point

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

Increase in Failures Due to Poor QA

Stress
Failures

Failure
Point

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

Failure Point Stress

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

System
Requirements

Logic
Requirements

Hardware
Implementation

Software
Implementation

Errors introduced in the
behavioral phase will propagate
through to any type of system
implementation.
This is the source of the
majority of functional errors in a
system.

Redundant
Implementation

Redundant
Implementation

Hardware
Implementation

Software
Implementation

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

Requirements
The most important document in safety systems is the

requirements document.
Requirements should include

Context
Scope and intended use
Constraints
Assumptions
Desired behavior
Timing requirements
Exception handling
Verification/Validation requirements
Definition of inputs and expected outputs

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

Languages
IEC61131-3 Defines PLC programming Languages

Applications
Software application development is left to “Good
Practice”
A good start is in IEC 61508 and 61511
IEC880 (Software for Computers in the Safety Systems
of Nuclear Power Stations) is a good reference

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

Programming Languages
Three CategoriesThree Categories

Fixed Program Language
Application is unalterable

Ex. Smart Transmitter

Limited Variability Language
Well defined functions may be programmed within a structured
framework

Ex. Ladder Logic, Instruction List, Structured Text

Full Variability Language
General purpose programming language

Ex. ADA, C, C++

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

Safety Software Design

Really, it is high QA design.
Apply standards and good practice that reflect lessons learned from past
accidents. Includes things like checklists.
Make use of hazard analysis techniques to help avoid introduction of
systematic errors.

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

Branches

Every
decision
branch in a
logical
system
increases the
complexity of
the system
exponentially

IF/
Then/
Else

IF/
Then/
Else

IF/
Then/
Else

IF/
Then/
Else

IF/
Then/
Else

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

Software Analysis Techniques

♦Software FMEA

♦HAZOP
–Hazard and Operability analysis

–Qualitative

–Carried out on design, not a FMEA

♦Fault/Event Trees
–Quantitative

–Only follows defined faults/events

♦Formal Methods

–Rigorous but unwieldy

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

IEC 61508 Part 3 Software
Defines requirements for software practices based
on target SIL level.
Includes appendices with recommended practice.

Practice may be:
HR Highly Recommended
R Recommended
--- mute/no recommendation
NR Not Recommended

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

Recommendations from IEC
61508 Part 3-Software

Technique/Measure Ref SIL1 SIL2 SIL3 SIL4
1 Use of coding standard HR HR HR HR
2 No dynamic objects R HR HR HR
3a No dynamic variables --- R HR HR
3b Online checking of the installation --- R HR HR
of dynamic variables
4 Limited use of interrupts R R HR HR
5 Limited use of pointers --- R HR HR
6 Limited use of recursion --- R HR HR
7 No unconditional jumps in programs R HR HR HR
in higher level languages

Table B.1 – Design and coding standards

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

Recommendations from IEC 61508 Part 3-Software

Technique/Measure Ref SIL1 SIL2 SIL3 SIL4
1 Software module size limit HR HR HR HR
2 Information hiding/encapsulation R HR HR HR
3 Parameter number limit R R R R
4 One entry/one exit point in HR HR HR HR
subroutines and functions
5 Fully defined interface HR HR HR HR

From Table B.9 – Modular approach

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

Hazard Mitigation from Software Perspective

N. Leveson

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

Software Checking

N. Leveson

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

State Machine Design

State or state machine based design
Each state must be complete
Each state and transition in-to and out-of must be

deterministic, e.g. fail safe states.
Define “safe” states and “dangerous” states

Error handling for each condition/state/transition

Restricted
Access Search Controlled

Access
No

Access
Beam
Permit

© K Mahoney/S. Prior
2002-2004

USPAS
June, 2004

McCabe Complexity

2Paths e n= − +e is number of edges
n is number of states

If-Then If-Then-Else
While-Do

